Skip to content

pydantic_ai.result

StreamedRunResult dataclass

Bases: Generic[AgentDepsT, OutputDataT]

Result of a streamed run that returns structured data via a tool call.

Source code in pydantic_ai_slim/pydantic_ai/result.py
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
@dataclass(init=False)
class StreamedRunResult(Generic[AgentDepsT, OutputDataT]):
    """Result of a streamed run that returns structured data via a tool call."""

    _all_messages: list[_messages.ModelMessage]
    _new_message_index: int

    _stream_response: AgentStream[AgentDepsT, OutputDataT] | None = None
    _on_complete: Callable[[], Awaitable[None]] | None = None

    _run_result: AgentRunResult[OutputDataT] | None = None

    is_complete: bool = field(default=False, init=False)
    """Whether the stream has all been received.

    This is set to `True` when one of
    [`stream_output`][pydantic_ai.result.StreamedRunResult.stream_output],
    [`stream_text`][pydantic_ai.result.StreamedRunResult.stream_text],
    [`stream_responses`][pydantic_ai.result.StreamedRunResult.stream_responses] or
    [`get_output`][pydantic_ai.result.StreamedRunResult.get_output] completes.
    """

    @overload
    def __init__(
        self,
        all_messages: list[_messages.ModelMessage],
        new_message_index: int,
        stream_response: AgentStream[AgentDepsT, OutputDataT] | None,
        on_complete: Callable[[], Awaitable[None]] | None,
    ) -> None: ...

    @overload
    def __init__(
        self,
        all_messages: list[_messages.ModelMessage],
        new_message_index: int,
        *,
        run_result: AgentRunResult[OutputDataT],
    ) -> None: ...

    def __init__(
        self,
        all_messages: list[_messages.ModelMessage],
        new_message_index: int,
        stream_response: AgentStream[AgentDepsT, OutputDataT] | None = None,
        on_complete: Callable[[], Awaitable[None]] | None = None,
        run_result: AgentRunResult[OutputDataT] | None = None,
    ) -> None:
        self._all_messages = all_messages
        self._new_message_index = new_message_index

        self._stream_response = stream_response
        self._on_complete = on_complete
        self._run_result = run_result

    def all_messages(self, *, output_tool_return_content: str | None = None) -> list[_messages.ModelMessage]:
        """Return the history of _messages.

        Args:
            output_tool_return_content: The return content of the tool call to set in the last message.
                This provides a convenient way to modify the content of the output tool call if you want to continue
                the conversation and want to set the response to the output tool call. If `None`, the last message will
                not be modified.

        Returns:
            List of messages.
        """
        # this is a method to be consistent with the other methods
        if output_tool_return_content is not None:
            raise NotImplementedError('Setting output tool return content is not supported for this result type.')
        return self._all_messages

    def all_messages_json(self, *, output_tool_return_content: str | None = None) -> bytes:  # pragma: no cover
        """Return all messages from [`all_messages`][pydantic_ai.result.StreamedRunResult.all_messages] as JSON bytes.

        Args:
            output_tool_return_content: The return content of the tool call to set in the last message.
                This provides a convenient way to modify the content of the output tool call if you want to continue
                the conversation and want to set the response to the output tool call. If `None`, the last message will
                not be modified.

        Returns:
            JSON bytes representing the messages.
        """
        return _messages.ModelMessagesTypeAdapter.dump_json(
            self.all_messages(output_tool_return_content=output_tool_return_content)
        )

    def new_messages(self, *, output_tool_return_content: str | None = None) -> list[_messages.ModelMessage]:
        """Return new messages associated with this run.

        Messages from older runs are excluded.

        Args:
            output_tool_return_content: The return content of the tool call to set in the last message.
                This provides a convenient way to modify the content of the output tool call if you want to continue
                the conversation and want to set the response to the output tool call. If `None`, the last message will
                not be modified.

        Returns:
            List of new messages.
        """
        return self.all_messages(output_tool_return_content=output_tool_return_content)[self._new_message_index :]

    def new_messages_json(self, *, output_tool_return_content: str | None = None) -> bytes:  # pragma: no cover
        """Return new messages from [`new_messages`][pydantic_ai.result.StreamedRunResult.new_messages] as JSON bytes.

        Args:
            output_tool_return_content: The return content of the tool call to set in the last message.
                This provides a convenient way to modify the content of the output tool call if you want to continue
                the conversation and want to set the response to the output tool call. If `None`, the last message will
                not be modified.

        Returns:
            JSON bytes representing the new messages.
        """
        return _messages.ModelMessagesTypeAdapter.dump_json(
            self.new_messages(output_tool_return_content=output_tool_return_content)
        )

    @deprecated('`StreamedRunResult.stream` is deprecated, use `stream_output` instead.')
    async def stream(self, *, debounce_by: float | None = 0.1) -> AsyncIterator[OutputDataT]:
        async for output in self.stream_output(debounce_by=debounce_by):
            yield output

    async def stream_output(self, *, debounce_by: float | None = 0.1) -> AsyncIterator[OutputDataT]:
        """Stream the output as an async iterable.

        The pydantic validator for structured data will be called in
        [partial mode](https://docs.pydantic.dev/dev/concepts/experimental/#partial-validation)
        on each iteration.

        Args:
            debounce_by: by how much (if at all) to debounce/group the output chunks by. `None` means no debouncing.
                Debouncing is particularly important for long structured outputs to reduce the overhead of
                performing validation as each token is received.

        Returns:
            An async iterable of the response data.
        """
        if self._run_result is not None:
            yield self._run_result.output
            await self._marked_completed()
        elif self._stream_response is not None:
            async for output in self._stream_response.stream_output(debounce_by=debounce_by):
                yield output
            await self._marked_completed(self.response)
        else:
            raise ValueError('No stream response or run result provided')  # pragma: no cover

    async def stream_text(self, *, delta: bool = False, debounce_by: float | None = 0.1) -> AsyncIterator[str]:
        """Stream the text result as an async iterable.

        !!! note
            Result validators will NOT be called on the text result if `delta=True`.

        Args:
            delta: if `True`, yield each chunk of text as it is received, if `False` (default), yield the full text
                up to the current point.
            debounce_by: by how much (if at all) to debounce/group the response chunks by. `None` means no debouncing.
                Debouncing is particularly important for long structured responses to reduce the overhead of
                performing validation as each token is received.
        """
        if self._run_result is not None:  # pragma: no cover
            # We can't really get here, as `_run_result` is only set in `run_stream` when `CallToolsNode` produces `DeferredToolRequests` output
            # as a result of a tool function raising `CallDeferred` or `ApprovalRequired`.
            # That'll change if we ever support something like `raise EndRun(output: OutputT)` where `OutputT` could be `str`.
            if not isinstance(self._run_result.output, str):
                raise exceptions.UserError('stream_text() can only be used with text responses')
            yield self._run_result.output
            await self._marked_completed()
        elif self._stream_response is not None:
            async for text in self._stream_response.stream_text(delta=delta, debounce_by=debounce_by):
                yield text
            await self._marked_completed(self.response)
        else:
            raise ValueError('No stream response or run result provided')  # pragma: no cover

    @deprecated('`StreamedRunResult.stream_structured` is deprecated, use `stream_responses` instead.')
    async def stream_structured(
        self, *, debounce_by: float | None = 0.1
    ) -> AsyncIterator[tuple[_messages.ModelResponse, bool]]:
        async for msg, last in self.stream_responses(debounce_by=debounce_by):
            yield msg, last

    async def stream_responses(
        self, *, debounce_by: float | None = 0.1
    ) -> AsyncIterator[tuple[_messages.ModelResponse, bool]]:
        """Stream the response as an async iterable of Structured LLM Messages.

        Args:
            debounce_by: by how much (if at all) to debounce/group the response chunks by. `None` means no debouncing.
                Debouncing is particularly important for long structured responses to reduce the overhead of
                performing validation as each token is received.

        Returns:
            An async iterable of the structured response message and whether that is the last message.
        """
        if self._run_result is not None:
            yield self.response, True
            await self._marked_completed()
        elif self._stream_response is not None:
            # if the message currently has any parts with content, yield before streaming
            async for msg in self._stream_response.stream_responses(debounce_by=debounce_by):
                yield msg, False

            msg = self.response
            yield msg, True

            await self._marked_completed(msg)
        else:
            raise ValueError('No stream response or run result provided')  # pragma: no cover

    async def get_output(self) -> OutputDataT:
        """Stream the whole response, validate and return it."""
        if self._run_result is not None:
            output = self._run_result.output
            await self._marked_completed()
            return output
        elif self._stream_response is not None:
            output = await self._stream_response.get_output()
            await self._marked_completed(self.response)
            return output
        else:
            raise ValueError('No stream response or run result provided')  # pragma: no cover

    @property
    def response(self) -> _messages.ModelResponse:
        """Return the current state of the response."""
        if self._run_result is not None:
            return self._run_result.response
        elif self._stream_response is not None:
            return self._stream_response.get()
        else:
            raise ValueError('No stream response or run result provided')  # pragma: no cover

    # TODO (v2): Make this a property
    def usage(self) -> RunUsage:
        """Return the usage of the whole run.

        !!! note
            This won't return the full usage until the stream is finished.
        """
        if self._run_result is not None:
            return self._run_result.usage()
        elif self._stream_response is not None:
            return self._stream_response.usage()
        else:
            raise ValueError('No stream response or run result provided')  # pragma: no cover

    # TODO (v2): Make this a property
    def timestamp(self) -> datetime:
        """Get the timestamp of the response."""
        if self._run_result is not None:
            return self._run_result.timestamp()
        elif self._stream_response is not None:
            return self._stream_response.timestamp()
        else:
            raise ValueError('No stream response or run result provided')  # pragma: no cover

    @deprecated('`validate_structured_output` is deprecated, use `validate_response_output` instead.')
    async def validate_structured_output(
        self, message: _messages.ModelResponse, *, allow_partial: bool = False
    ) -> OutputDataT:
        return await self.validate_response_output(message, allow_partial=allow_partial)

    async def validate_response_output(
        self, message: _messages.ModelResponse, *, allow_partial: bool = False
    ) -> OutputDataT:
        """Validate a structured result message."""
        if self._run_result is not None:
            return self._run_result.output
        elif self._stream_response is not None:
            return await self._stream_response.validate_response_output(message, allow_partial=allow_partial)
        else:
            raise ValueError('No stream response or run result provided')  # pragma: no cover

    async def _marked_completed(self, message: _messages.ModelResponse | None = None) -> None:
        self.is_complete = True
        if message is not None:
            self._all_messages.append(message)
        if self._on_complete is not None:
            await self._on_complete()

is_complete class-attribute instance-attribute

is_complete: bool = field(default=False, init=False)

Whether the stream has all been received.

This is set to True when one of stream_output, stream_text, stream_responses or get_output completes.

all_messages

all_messages(
    *, output_tool_return_content: str | None = None
) -> list[ModelMessage]

Return the history of _messages.

Parameters:

Name Type Description Default
output_tool_return_content str | None

The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If None, the last message will not be modified.

None

Returns:

Type Description
list[ModelMessage]

List of messages.

Source code in pydantic_ai_slim/pydantic_ai/result.py
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
def all_messages(self, *, output_tool_return_content: str | None = None) -> list[_messages.ModelMessage]:
    """Return the history of _messages.

    Args:
        output_tool_return_content: The return content of the tool call to set in the last message.
            This provides a convenient way to modify the content of the output tool call if you want to continue
            the conversation and want to set the response to the output tool call. If `None`, the last message will
            not be modified.

    Returns:
        List of messages.
    """
    # this is a method to be consistent with the other methods
    if output_tool_return_content is not None:
        raise NotImplementedError('Setting output tool return content is not supported for this result type.')
    return self._all_messages

all_messages_json

all_messages_json(
    *, output_tool_return_content: str | None = None
) -> bytes

Return all messages from all_messages as JSON bytes.

Parameters:

Name Type Description Default
output_tool_return_content str | None

The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If None, the last message will not be modified.

None

Returns:

Type Description
bytes

JSON bytes representing the messages.

Source code in pydantic_ai_slim/pydantic_ai/result.py
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
def all_messages_json(self, *, output_tool_return_content: str | None = None) -> bytes:  # pragma: no cover
    """Return all messages from [`all_messages`][pydantic_ai.result.StreamedRunResult.all_messages] as JSON bytes.

    Args:
        output_tool_return_content: The return content of the tool call to set in the last message.
            This provides a convenient way to modify the content of the output tool call if you want to continue
            the conversation and want to set the response to the output tool call. If `None`, the last message will
            not be modified.

    Returns:
        JSON bytes representing the messages.
    """
    return _messages.ModelMessagesTypeAdapter.dump_json(
        self.all_messages(output_tool_return_content=output_tool_return_content)
    )

new_messages

new_messages(
    *, output_tool_return_content: str | None = None
) -> list[ModelMessage]

Return new messages associated with this run.

Messages from older runs are excluded.

Parameters:

Name Type Description Default
output_tool_return_content str | None

The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If None, the last message will not be modified.

None

Returns:

Type Description
list[ModelMessage]

List of new messages.

Source code in pydantic_ai_slim/pydantic_ai/result.py
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
def new_messages(self, *, output_tool_return_content: str | None = None) -> list[_messages.ModelMessage]:
    """Return new messages associated with this run.

    Messages from older runs are excluded.

    Args:
        output_tool_return_content: The return content of the tool call to set in the last message.
            This provides a convenient way to modify the content of the output tool call if you want to continue
            the conversation and want to set the response to the output tool call. If `None`, the last message will
            not be modified.

    Returns:
        List of new messages.
    """
    return self.all_messages(output_tool_return_content=output_tool_return_content)[self._new_message_index :]

new_messages_json

new_messages_json(
    *, output_tool_return_content: str | None = None
) -> bytes

Return new messages from new_messages as JSON bytes.

Parameters:

Name Type Description Default
output_tool_return_content str | None

The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If None, the last message will not be modified.

None

Returns:

Type Description
bytes

JSON bytes representing the new messages.

Source code in pydantic_ai_slim/pydantic_ai/result.py
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
def new_messages_json(self, *, output_tool_return_content: str | None = None) -> bytes:  # pragma: no cover
    """Return new messages from [`new_messages`][pydantic_ai.result.StreamedRunResult.new_messages] as JSON bytes.

    Args:
        output_tool_return_content: The return content of the tool call to set in the last message.
            This provides a convenient way to modify the content of the output tool call if you want to continue
            the conversation and want to set the response to the output tool call. If `None`, the last message will
            not be modified.

    Returns:
        JSON bytes representing the new messages.
    """
    return _messages.ModelMessagesTypeAdapter.dump_json(
        self.new_messages(output_tool_return_content=output_tool_return_content)
    )

stream async deprecated

stream(
    *, debounce_by: float | None = 0.1
) -> AsyncIterator[OutputDataT]
Deprecated

StreamedRunResult.stream is deprecated, use stream_output instead.

Source code in pydantic_ai_slim/pydantic_ai/result.py
394
395
396
397
@deprecated('`StreamedRunResult.stream` is deprecated, use `stream_output` instead.')
async def stream(self, *, debounce_by: float | None = 0.1) -> AsyncIterator[OutputDataT]:
    async for output in self.stream_output(debounce_by=debounce_by):
        yield output

stream_output async

stream_output(
    *, debounce_by: float | None = 0.1
) -> AsyncIterator[OutputDataT]

Stream the output as an async iterable.

The pydantic validator for structured data will be called in partial mode on each iteration.

Parameters:

Name Type Description Default
debounce_by float | None

by how much (if at all) to debounce/group the output chunks by. None means no debouncing. Debouncing is particularly important for long structured outputs to reduce the overhead of performing validation as each token is received.

0.1

Returns:

Type Description
AsyncIterator[OutputDataT]

An async iterable of the response data.

Source code in pydantic_ai_slim/pydantic_ai/result.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
async def stream_output(self, *, debounce_by: float | None = 0.1) -> AsyncIterator[OutputDataT]:
    """Stream the output as an async iterable.

    The pydantic validator for structured data will be called in
    [partial mode](https://docs.pydantic.dev/dev/concepts/experimental/#partial-validation)
    on each iteration.

    Args:
        debounce_by: by how much (if at all) to debounce/group the output chunks by. `None` means no debouncing.
            Debouncing is particularly important for long structured outputs to reduce the overhead of
            performing validation as each token is received.

    Returns:
        An async iterable of the response data.
    """
    if self._run_result is not None:
        yield self._run_result.output
        await self._marked_completed()
    elif self._stream_response is not None:
        async for output in self._stream_response.stream_output(debounce_by=debounce_by):
            yield output
        await self._marked_completed(self.response)
    else:
        raise ValueError('No stream response or run result provided')  # pragma: no cover

stream_text async

stream_text(
    *, delta: bool = False, debounce_by: float | None = 0.1
) -> AsyncIterator[str]

Stream the text result as an async iterable.

Note

Result validators will NOT be called on the text result if delta=True.

Parameters:

Name Type Description Default
delta bool

if True, yield each chunk of text as it is received, if False (default), yield the full text up to the current point.

False
debounce_by float | None

by how much (if at all) to debounce/group the response chunks by. None means no debouncing. Debouncing is particularly important for long structured responses to reduce the overhead of performing validation as each token is received.

0.1
Source code in pydantic_ai_slim/pydantic_ai/result.py
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
async def stream_text(self, *, delta: bool = False, debounce_by: float | None = 0.1) -> AsyncIterator[str]:
    """Stream the text result as an async iterable.

    !!! note
        Result validators will NOT be called on the text result if `delta=True`.

    Args:
        delta: if `True`, yield each chunk of text as it is received, if `False` (default), yield the full text
            up to the current point.
        debounce_by: by how much (if at all) to debounce/group the response chunks by. `None` means no debouncing.
            Debouncing is particularly important for long structured responses to reduce the overhead of
            performing validation as each token is received.
    """
    if self._run_result is not None:  # pragma: no cover
        # We can't really get here, as `_run_result` is only set in `run_stream` when `CallToolsNode` produces `DeferredToolRequests` output
        # as a result of a tool function raising `CallDeferred` or `ApprovalRequired`.
        # That'll change if we ever support something like `raise EndRun(output: OutputT)` where `OutputT` could be `str`.
        if not isinstance(self._run_result.output, str):
            raise exceptions.UserError('stream_text() can only be used with text responses')
        yield self._run_result.output
        await self._marked_completed()
    elif self._stream_response is not None:
        async for text in self._stream_response.stream_text(delta=delta, debounce_by=debounce_by):
            yield text
        await self._marked_completed(self.response)
    else:
        raise ValueError('No stream response or run result provided')  # pragma: no cover

stream_structured async deprecated

stream_structured(
    *, debounce_by: float | None = 0.1
) -> AsyncIterator[tuple[ModelResponse, bool]]
Deprecated

StreamedRunResult.stream_structured is deprecated, use stream_responses instead.

Source code in pydantic_ai_slim/pydantic_ai/result.py
452
453
454
455
456
457
@deprecated('`StreamedRunResult.stream_structured` is deprecated, use `stream_responses` instead.')
async def stream_structured(
    self, *, debounce_by: float | None = 0.1
) -> AsyncIterator[tuple[_messages.ModelResponse, bool]]:
    async for msg, last in self.stream_responses(debounce_by=debounce_by):
        yield msg, last

stream_responses async

stream_responses(
    *, debounce_by: float | None = 0.1
) -> AsyncIterator[tuple[ModelResponse, bool]]

Stream the response as an async iterable of Structured LLM Messages.

Parameters:

Name Type Description Default
debounce_by float | None

by how much (if at all) to debounce/group the response chunks by. None means no debouncing. Debouncing is particularly important for long structured responses to reduce the overhead of performing validation as each token is received.

0.1

Returns:

Type Description
AsyncIterator[tuple[ModelResponse, bool]]

An async iterable of the structured response message and whether that is the last message.

Source code in pydantic_ai_slim/pydantic_ai/result.py
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
async def stream_responses(
    self, *, debounce_by: float | None = 0.1
) -> AsyncIterator[tuple[_messages.ModelResponse, bool]]:
    """Stream the response as an async iterable of Structured LLM Messages.

    Args:
        debounce_by: by how much (if at all) to debounce/group the response chunks by. `None` means no debouncing.
            Debouncing is particularly important for long structured responses to reduce the overhead of
            performing validation as each token is received.

    Returns:
        An async iterable of the structured response message and whether that is the last message.
    """
    if self._run_result is not None:
        yield self.response, True
        await self._marked_completed()
    elif self._stream_response is not None:
        # if the message currently has any parts with content, yield before streaming
        async for msg in self._stream_response.stream_responses(debounce_by=debounce_by):
            yield msg, False

        msg = self.response
        yield msg, True

        await self._marked_completed(msg)
    else:
        raise ValueError('No stream response or run result provided')  # pragma: no cover

get_output async

get_output() -> OutputDataT

Stream the whole response, validate and return it.

Source code in pydantic_ai_slim/pydantic_ai/result.py
487
488
489
490
491
492
493
494
495
496
497
498
async def get_output(self) -> OutputDataT:
    """Stream the whole response, validate and return it."""
    if self._run_result is not None:
        output = self._run_result.output
        await self._marked_completed()
        return output
    elif self._stream_response is not None:
        output = await self._stream_response.get_output()
        await self._marked_completed(self.response)
        return output
    else:
        raise ValueError('No stream response or run result provided')  # pragma: no cover

response property

response: ModelResponse

Return the current state of the response.

usage

usage() -> RunUsage

Return the usage of the whole run.

Note

This won't return the full usage until the stream is finished.

Source code in pydantic_ai_slim/pydantic_ai/result.py
511
512
513
514
515
516
517
518
519
520
521
522
def usage(self) -> RunUsage:
    """Return the usage of the whole run.

    !!! note
        This won't return the full usage until the stream is finished.
    """
    if self._run_result is not None:
        return self._run_result.usage()
    elif self._stream_response is not None:
        return self._stream_response.usage()
    else:
        raise ValueError('No stream response or run result provided')  # pragma: no cover

timestamp

timestamp() -> datetime

Get the timestamp of the response.

Source code in pydantic_ai_slim/pydantic_ai/result.py
525
526
527
528
529
530
531
532
def timestamp(self) -> datetime:
    """Get the timestamp of the response."""
    if self._run_result is not None:
        return self._run_result.timestamp()
    elif self._stream_response is not None:
        return self._stream_response.timestamp()
    else:
        raise ValueError('No stream response or run result provided')  # pragma: no cover

validate_structured_output async deprecated

validate_structured_output(
    message: ModelResponse, *, allow_partial: bool = False
) -> OutputDataT
Deprecated

validate_structured_output is deprecated, use validate_response_output instead.

Source code in pydantic_ai_slim/pydantic_ai/result.py
534
535
536
537
538
@deprecated('`validate_structured_output` is deprecated, use `validate_response_output` instead.')
async def validate_structured_output(
    self, message: _messages.ModelResponse, *, allow_partial: bool = False
) -> OutputDataT:
    return await self.validate_response_output(message, allow_partial=allow_partial)

validate_response_output async

validate_response_output(
    message: ModelResponse, *, allow_partial: bool = False
) -> OutputDataT

Validate a structured result message.

Source code in pydantic_ai_slim/pydantic_ai/result.py
540
541
542
543
544
545
546
547
548
549
async def validate_response_output(
    self, message: _messages.ModelResponse, *, allow_partial: bool = False
) -> OutputDataT:
    """Validate a structured result message."""
    if self._run_result is not None:
        return self._run_result.output
    elif self._stream_response is not None:
        return await self._stream_response.validate_response_output(message, allow_partial=allow_partial)
    else:
        raise ValueError('No stream response or run result provided')  # pragma: no cover

StreamedRunResultSync dataclass

Bases: Generic[AgentDepsT, OutputDataT]

Synchronous wrapper for StreamedRunResult that only exposes sync methods.

Source code in pydantic_ai_slim/pydantic_ai/result.py
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
@dataclass(init=False)
class StreamedRunResultSync(Generic[AgentDepsT, OutputDataT]):
    """Synchronous wrapper for [`StreamedRunResult`][pydantic_ai.result.StreamedRunResult] that only exposes sync methods."""

    _streamed_run_result: StreamedRunResult[AgentDepsT, OutputDataT]

    def __init__(self, streamed_run_result: StreamedRunResult[AgentDepsT, OutputDataT]) -> None:
        self._streamed_run_result = streamed_run_result

    def all_messages(self, *, output_tool_return_content: str | None = None) -> list[_messages.ModelMessage]:
        """Return the history of messages.

        Args:
            output_tool_return_content: The return content of the tool call to set in the last message.
                This provides a convenient way to modify the content of the output tool call if you want to continue
                the conversation and want to set the response to the output tool call. If `None`, the last message will
                not be modified.

        Returns:
            List of messages.
        """
        return self._streamed_run_result.all_messages(output_tool_return_content=output_tool_return_content)

    def all_messages_json(self, *, output_tool_return_content: str | None = None) -> bytes:  # pragma: no cover
        """Return all messages from [`all_messages`][pydantic_ai.result.StreamedRunResultSync.all_messages] as JSON bytes.

        Args:
            output_tool_return_content: The return content of the tool call to set in the last message.
                This provides a convenient way to modify the content of the output tool call if you want to continue
                the conversation and want to set the response to the output tool call. If `None`, the last message will
                not be modified.

        Returns:
            JSON bytes representing the messages.
        """
        return self._streamed_run_result.all_messages_json(output_tool_return_content=output_tool_return_content)

    def new_messages(self, *, output_tool_return_content: str | None = None) -> list[_messages.ModelMessage]:
        """Return new messages associated with this run.

        Messages from older runs are excluded.

        Args:
            output_tool_return_content: The return content of the tool call to set in the last message.
                This provides a convenient way to modify the content of the output tool call if you want to continue
                the conversation and want to set the response to the output tool call. If `None`, the last message will
                not be modified.

        Returns:
            List of new messages.
        """
        return self._streamed_run_result.new_messages(output_tool_return_content=output_tool_return_content)

    def new_messages_json(self, *, output_tool_return_content: str | None = None) -> bytes:  # pragma: no cover
        """Return new messages from [`new_messages`][pydantic_ai.result.StreamedRunResultSync.new_messages] as JSON bytes.

        Args:
            output_tool_return_content: The return content of the tool call to set in the last message.
                This provides a convenient way to modify the content of the output tool call if you want to continue
                the conversation and want to set the response to the output tool call. If `None`, the last message will
                not be modified.

        Returns:
            JSON bytes representing the new messages.
        """
        return self._streamed_run_result.new_messages_json(output_tool_return_content=output_tool_return_content)

    def stream_output(self, *, debounce_by: float | None = 0.1) -> Iterator[OutputDataT]:
        """Stream the output as an iterable.

        The pydantic validator for structured data will be called in
        [partial mode](https://docs.pydantic.dev/dev/concepts/experimental/#partial-validation)
        on each iteration.

        Args:
            debounce_by: by how much (if at all) to debounce/group the output chunks by. `None` means no debouncing.
                Debouncing is particularly important for long structured outputs to reduce the overhead of
                performing validation as each token is received.

        Returns:
            An iterable of the response data.
        """
        return _utils.sync_async_iterator(self._streamed_run_result.stream_output(debounce_by=debounce_by))

    def stream_text(self, *, delta: bool = False, debounce_by: float | None = 0.1) -> Iterator[str]:
        """Stream the text result as an iterable.

        !!! note
            Result validators will NOT be called on the text result if `delta=True`.

        Args:
            delta: if `True`, yield each chunk of text as it is received, if `False` (default), yield the full text
                up to the current point.
            debounce_by: by how much (if at all) to debounce/group the response chunks by. `None` means no debouncing.
                Debouncing is particularly important for long structured responses to reduce the overhead of
                performing validation as each token is received.
        """
        return _utils.sync_async_iterator(self._streamed_run_result.stream_text(delta=delta, debounce_by=debounce_by))

    def stream_responses(self, *, debounce_by: float | None = 0.1) -> Iterator[tuple[_messages.ModelResponse, bool]]:
        """Stream the response as an iterable of Structured LLM Messages.

        Args:
            debounce_by: by how much (if at all) to debounce/group the response chunks by. `None` means no debouncing.
                Debouncing is particularly important for long structured responses to reduce the overhead of
                performing validation as each token is received.

        Returns:
            An iterable of the structured response message and whether that is the last message.
        """
        return _utils.sync_async_iterator(self._streamed_run_result.stream_responses(debounce_by=debounce_by))

    def get_output(self) -> OutputDataT:
        """Stream the whole response, validate and return it."""
        return _utils.get_event_loop().run_until_complete(self._streamed_run_result.get_output())

    @property
    def response(self) -> _messages.ModelResponse:
        """Return the current state of the response."""
        return self._streamed_run_result.response

    def usage(self) -> RunUsage:
        """Return the usage of the whole run.

        !!! note
            This won't return the full usage until the stream is finished.
        """
        return self._streamed_run_result.usage()

    def timestamp(self) -> datetime:
        """Get the timestamp of the response."""
        return self._streamed_run_result.timestamp()

    def validate_response_output(self, message: _messages.ModelResponse, *, allow_partial: bool = False) -> OutputDataT:
        """Validate a structured result message."""
        return _utils.get_event_loop().run_until_complete(
            self._streamed_run_result.validate_response_output(message, allow_partial=allow_partial)
        )

    @property
    def is_complete(self) -> bool:
        """Whether the stream has all been received.

        This is set to `True` when one of
        [`stream_output`][pydantic_ai.result.StreamedRunResultSync.stream_output],
        [`stream_text`][pydantic_ai.result.StreamedRunResultSync.stream_text],
        [`stream_responses`][pydantic_ai.result.StreamedRunResultSync.stream_responses] or
        [`get_output`][pydantic_ai.result.StreamedRunResultSync.get_output] completes.
        """
        return self._streamed_run_result.is_complete

all_messages

all_messages(
    *, output_tool_return_content: str | None = None
) -> list[ModelMessage]

Return the history of messages.

Parameters:

Name Type Description Default
output_tool_return_content str | None

The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If None, the last message will not be modified.

None

Returns:

Type Description
list[ModelMessage]

List of messages.

Source code in pydantic_ai_slim/pydantic_ai/result.py
568
569
570
571
572
573
574
575
576
577
578
579
580
def all_messages(self, *, output_tool_return_content: str | None = None) -> list[_messages.ModelMessage]:
    """Return the history of messages.

    Args:
        output_tool_return_content: The return content of the tool call to set in the last message.
            This provides a convenient way to modify the content of the output tool call if you want to continue
            the conversation and want to set the response to the output tool call. If `None`, the last message will
            not be modified.

    Returns:
        List of messages.
    """
    return self._streamed_run_result.all_messages(output_tool_return_content=output_tool_return_content)

all_messages_json

all_messages_json(
    *, output_tool_return_content: str | None = None
) -> bytes

Return all messages from all_messages as JSON bytes.

Parameters:

Name Type Description Default
output_tool_return_content str | None

The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If None, the last message will not be modified.

None

Returns:

Type Description
bytes

JSON bytes representing the messages.

Source code in pydantic_ai_slim/pydantic_ai/result.py
582
583
584
585
586
587
588
589
590
591
592
593
594
def all_messages_json(self, *, output_tool_return_content: str | None = None) -> bytes:  # pragma: no cover
    """Return all messages from [`all_messages`][pydantic_ai.result.StreamedRunResultSync.all_messages] as JSON bytes.

    Args:
        output_tool_return_content: The return content of the tool call to set in the last message.
            This provides a convenient way to modify the content of the output tool call if you want to continue
            the conversation and want to set the response to the output tool call. If `None`, the last message will
            not be modified.

    Returns:
        JSON bytes representing the messages.
    """
    return self._streamed_run_result.all_messages_json(output_tool_return_content=output_tool_return_content)

new_messages

new_messages(
    *, output_tool_return_content: str | None = None
) -> list[ModelMessage]

Return new messages associated with this run.

Messages from older runs are excluded.

Parameters:

Name Type Description Default
output_tool_return_content str | None

The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If None, the last message will not be modified.

None

Returns:

Type Description
list[ModelMessage]

List of new messages.

Source code in pydantic_ai_slim/pydantic_ai/result.py
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
def new_messages(self, *, output_tool_return_content: str | None = None) -> list[_messages.ModelMessage]:
    """Return new messages associated with this run.

    Messages from older runs are excluded.

    Args:
        output_tool_return_content: The return content of the tool call to set in the last message.
            This provides a convenient way to modify the content of the output tool call if you want to continue
            the conversation and want to set the response to the output tool call. If `None`, the last message will
            not be modified.

    Returns:
        List of new messages.
    """
    return self._streamed_run_result.new_messages(output_tool_return_content=output_tool_return_content)

new_messages_json

new_messages_json(
    *, output_tool_return_content: str | None = None
) -> bytes

Return new messages from new_messages as JSON bytes.

Parameters:

Name Type Description Default
output_tool_return_content str | None

The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If None, the last message will not be modified.

None

Returns:

Type Description
bytes

JSON bytes representing the new messages.

Source code in pydantic_ai_slim/pydantic_ai/result.py
612
613
614
615
616
617
618
619
620
621
622
623
624
def new_messages_json(self, *, output_tool_return_content: str | None = None) -> bytes:  # pragma: no cover
    """Return new messages from [`new_messages`][pydantic_ai.result.StreamedRunResultSync.new_messages] as JSON bytes.

    Args:
        output_tool_return_content: The return content of the tool call to set in the last message.
            This provides a convenient way to modify the content of the output tool call if you want to continue
            the conversation and want to set the response to the output tool call. If `None`, the last message will
            not be modified.

    Returns:
        JSON bytes representing the new messages.
    """
    return self._streamed_run_result.new_messages_json(output_tool_return_content=output_tool_return_content)

stream_output

stream_output(
    *, debounce_by: float | None = 0.1
) -> Iterator[OutputDataT]

Stream the output as an iterable.

The pydantic validator for structured data will be called in partial mode on each iteration.

Parameters:

Name Type Description Default
debounce_by float | None

by how much (if at all) to debounce/group the output chunks by. None means no debouncing. Debouncing is particularly important for long structured outputs to reduce the overhead of performing validation as each token is received.

0.1

Returns:

Type Description
Iterator[OutputDataT]

An iterable of the response data.

Source code in pydantic_ai_slim/pydantic_ai/result.py
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
def stream_output(self, *, debounce_by: float | None = 0.1) -> Iterator[OutputDataT]:
    """Stream the output as an iterable.

    The pydantic validator for structured data will be called in
    [partial mode](https://docs.pydantic.dev/dev/concepts/experimental/#partial-validation)
    on each iteration.

    Args:
        debounce_by: by how much (if at all) to debounce/group the output chunks by. `None` means no debouncing.
            Debouncing is particularly important for long structured outputs to reduce the overhead of
            performing validation as each token is received.

    Returns:
        An iterable of the response data.
    """
    return _utils.sync_async_iterator(self._streamed_run_result.stream_output(debounce_by=debounce_by))

stream_text

stream_text(
    *, delta: bool = False, debounce_by: float | None = 0.1
) -> Iterator[str]

Stream the text result as an iterable.

Note

Result validators will NOT be called on the text result if delta=True.

Parameters:

Name Type Description Default
delta bool

if True, yield each chunk of text as it is received, if False (default), yield the full text up to the current point.

False
debounce_by float | None

by how much (if at all) to debounce/group the response chunks by. None means no debouncing. Debouncing is particularly important for long structured responses to reduce the overhead of performing validation as each token is received.

0.1
Source code in pydantic_ai_slim/pydantic_ai/result.py
643
644
645
646
647
648
649
650
651
652
653
654
655
656
def stream_text(self, *, delta: bool = False, debounce_by: float | None = 0.1) -> Iterator[str]:
    """Stream the text result as an iterable.

    !!! note
        Result validators will NOT be called on the text result if `delta=True`.

    Args:
        delta: if `True`, yield each chunk of text as it is received, if `False` (default), yield the full text
            up to the current point.
        debounce_by: by how much (if at all) to debounce/group the response chunks by. `None` means no debouncing.
            Debouncing is particularly important for long structured responses to reduce the overhead of
            performing validation as each token is received.
    """
    return _utils.sync_async_iterator(self._streamed_run_result.stream_text(delta=delta, debounce_by=debounce_by))

stream_responses

stream_responses(
    *, debounce_by: float | None = 0.1
) -> Iterator[tuple[ModelResponse, bool]]

Stream the response as an iterable of Structured LLM Messages.

Parameters:

Name Type Description Default
debounce_by float | None

by how much (if at all) to debounce/group the response chunks by. None means no debouncing. Debouncing is particularly important for long structured responses to reduce the overhead of performing validation as each token is received.

0.1

Returns:

Type Description
Iterator[tuple[ModelResponse, bool]]

An iterable of the structured response message and whether that is the last message.

Source code in pydantic_ai_slim/pydantic_ai/result.py
658
659
660
661
662
663
664
665
666
667
668
669
def stream_responses(self, *, debounce_by: float | None = 0.1) -> Iterator[tuple[_messages.ModelResponse, bool]]:
    """Stream the response as an iterable of Structured LLM Messages.

    Args:
        debounce_by: by how much (if at all) to debounce/group the response chunks by. `None` means no debouncing.
            Debouncing is particularly important for long structured responses to reduce the overhead of
            performing validation as each token is received.

    Returns:
        An iterable of the structured response message and whether that is the last message.
    """
    return _utils.sync_async_iterator(self._streamed_run_result.stream_responses(debounce_by=debounce_by))

get_output

get_output() -> OutputDataT

Stream the whole response, validate and return it.

Source code in pydantic_ai_slim/pydantic_ai/result.py
671
672
673
def get_output(self) -> OutputDataT:
    """Stream the whole response, validate and return it."""
    return _utils.get_event_loop().run_until_complete(self._streamed_run_result.get_output())

response property

response: ModelResponse

Return the current state of the response.

usage

usage() -> RunUsage

Return the usage of the whole run.

Note

This won't return the full usage until the stream is finished.

Source code in pydantic_ai_slim/pydantic_ai/result.py
680
681
682
683
684
685
686
def usage(self) -> RunUsage:
    """Return the usage of the whole run.

    !!! note
        This won't return the full usage until the stream is finished.
    """
    return self._streamed_run_result.usage()

timestamp

timestamp() -> datetime

Get the timestamp of the response.

Source code in pydantic_ai_slim/pydantic_ai/result.py
688
689
690
def timestamp(self) -> datetime:
    """Get the timestamp of the response."""
    return self._streamed_run_result.timestamp()

validate_response_output

validate_response_output(
    message: ModelResponse, *, allow_partial: bool = False
) -> OutputDataT

Validate a structured result message.

Source code in pydantic_ai_slim/pydantic_ai/result.py
692
693
694
695
696
def validate_response_output(self, message: _messages.ModelResponse, *, allow_partial: bool = False) -> OutputDataT:
    """Validate a structured result message."""
    return _utils.get_event_loop().run_until_complete(
        self._streamed_run_result.validate_response_output(message, allow_partial=allow_partial)
    )

is_complete property

is_complete: bool

Whether the stream has all been received.

This is set to True when one of stream_output, stream_text, stream_responses or get_output completes.